Deep receiver design for multi-carrier waveforms using CNNs

buir.contributor.authorÖzer, Sedat
dc.citation.epage36en_US
dc.citation.spage31en_US
dc.contributor.authorYıldırım, Y.en_US
dc.contributor.authorÖzer, Sedaten_US
dc.contributor.authorÇırpan, H. A.en_US
dc.coverage.spatialMilan, Italyen_US
dc.date.accessioned2021-02-03T13:17:32Z
dc.date.available2021-02-03T13:17:32Z
dc.date.issued2020
dc.departmentDepartment of Computer Engineeringen_US
dc.descriptionDate of Conference: 7-9 July 2020en_US
dc.descriptionConference name: 43rd International Conference on Telecommunications and Signal Processing, TSP 2020en_US
dc.description.abstractIn this paper, a deep learning based receiver is proposed for a collection of multi-carrier wave-forms including both current and next-generation wireless communication systems. In particular, we propose to use a convolutional neural network (CNN) for jointly detection and demodulation of the received signal at the receiver in wireless environments. We compare our proposed architecture to the classical methods and demonstrate that our proposed CNN-based architecture can perform better on different multi-carrier forms including OFDM and GFDM in various simulations. Furthermore, we compare the total number of required parameters for each network for memory requirements.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2021-02-03T13:17:32Z No. of bitstreams: 1 Deep_receiver_design_for_multi-carrier_waveforms_using_CNNs.pdf: 1114510 bytes, checksum: da900fc1aca111bf25548844847bbb61 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-02-03T13:17:32Z (GMT). No. of bitstreams: 1 Deep_receiver_design_for_multi-carrier_waveforms_using_CNNs.pdf: 1114510 bytes, checksum: da900fc1aca111bf25548844847bbb61 (MD5) Previous issue date: 2020en
dc.identifier.doi10.1109/TSP49548.2020.9163562en_US
dc.identifier.isbn9781728163765en_US
dc.identifier.urihttp://hdl.handle.net/11693/54979en_US
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttps://doi.org/10.1109/TSP49548.2020.9163562en_US
dc.source.title43rd International Conference on Telecommunications and Signal Processing, TSP 2020en_US
dc.subjectCNNen_US
dc.subjectDeep learningen_US
dc.subjectDeep receiver designen_US
dc.subjectGFDMen_US
dc.subjectMulti-carrier wave-formsen_US
dc.subjectOFDMen_US
dc.titleDeep receiver design for multi-carrier waveforms using CNNsen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Deep_receiver_design_for_multi-carrier_waveforms_using_CNNs.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: