Productive elements in group cohomologyi

dc.citation.epage401en_US
dc.citation.issueNumber1en_US
dc.citation.spage381en_US
dc.citation.volumeNumber13en_US
dc.contributor.authorYalçın, E.en_US
dc.date.accessioned2019-01-31T13:07:40Z
dc.date.available2019-01-31T13:07:40Z
dc.date.issued2011en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet G be a finite group and k be a field of characteristic p > 0. A cohomology class ζ ∈ Hn(G, k) is called productive if it annihilates Ext∗kG(Lζ , Lζ ). We consider the chain complex P(ζ) of projective kG-modules which has the homology of an (n − 1)-sphere and whose k-invariant is ζ under a certain polarization. We show that ζ is productive if and only if there is a chain map ∆: P(ζ) → P(ζ) ⊗ P(ζ) such that (id ⊗ )∆ 'id and ( ⊗ id)∆ ' id. Using the Postnikov decomposition of P(ζ) ⊗ P(ζ), we prove that there is a unique obstruction for constructing a chain map ∆ satisfying these properties. Studying this obstruction more closely, we obtain theorems of Carlson and Langer on productive elements.en_US
dc.identifier.eissn1532-0081
dc.identifier.issn1532-0073
dc.identifier.urihttp://hdl.handle.net/11693/48623
dc.language.isoEnglishen_US
dc.publisherInternational Pressen_US
dc.relation.isversionofhttps://projecteuclid.org/download/pdf_1/euclid.hha/1311953358en_US
dc.source.titleHomology, Homotopy and Applicationsen_US
dc.titleProductive elements in group cohomologyien_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Productive- Elements- in- Group- Cohomology.pdf
Size:
156.18 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: