Productive elements in group cohomologyi
dc.citation.epage | 401 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 381 | en_US |
dc.citation.volumeNumber | 13 | en_US |
dc.contributor.author | Yalçın, E. | en_US |
dc.date.accessioned | 2019-01-31T13:07:40Z | |
dc.date.available | 2019-01-31T13:07:40Z | |
dc.date.issued | 2011 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Let G be a finite group and k be a field of characteristic p > 0. A cohomology class ζ ∈ Hn(G, k) is called productive if it annihilates Ext∗kG(Lζ , Lζ ). We consider the chain complex P(ζ) of projective kG-modules which has the homology of an (n − 1)-sphere and whose k-invariant is ζ under a certain polarization. We show that ζ is productive if and only if there is a chain map ∆: P(ζ) → P(ζ) ⊗ P(ζ) such that (id ⊗ )∆ 'id and ( ⊗ id)∆ ' id. Using the Postnikov decomposition of P(ζ) ⊗ P(ζ), we prove that there is a unique obstruction for constructing a chain map ∆ satisfying these properties. Studying this obstruction more closely, we obtain theorems of Carlson and Langer on productive elements. | en_US |
dc.identifier.eissn | 1532-0081 | |
dc.identifier.issn | 1532-0073 | |
dc.identifier.uri | http://hdl.handle.net/11693/48623 | |
dc.language.iso | English | en_US |
dc.publisher | International Press | en_US |
dc.relation.isversionof | https://projecteuclid.org/download/pdf_1/euclid.hha/1311953358 | en_US |
dc.source.title | Homology, Homotopy and Applications | en_US |
dc.title | Productive elements in group cohomologyi | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Productive- Elements- in- Group- Cohomology.pdf
- Size:
- 156.18 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: