Bivariate density estimation with randomly truncated data

dc.citation.epage115en_US
dc.citation.issueNumber1en_US
dc.citation.spage88en_US
dc.citation.volumeNumber74en_US
dc.contributor.authorGürler, Ü.en_US
dc.contributor.authorPrewitt, K.en_US
dc.date.accessioned2015-07-28T11:56:57Z
dc.date.available2015-07-28T11:56:57Z
dc.date.issued2000en_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractIn this study bivariate kernel density estimators are considered when a component is subject to random truncation. In bivariate truncation models one observes the i.i.d. samples from the triplets (T, Y, X) only if T less than or equal to 1: In this set-up, Y is said to be left truncated by T and T is right truncated by Y. We consider the estimation of the bivariate density function of (Y, X) via nonparametric kernel methods where Y is the variable of interest and X a covariate. We establish an i.i.d, representation of the bivariate distribution function estimator and show that the remainder term achieves an improved order of O(n(-1) In n), which is desirable fur density estimation purposes. Expressions are then provided for the bias and the variance of the estimators. Finally some simulation results are presented. (C) 2000 Academic Pressen_US
dc.description.provenanceMade available in DSpace on 2015-07-28T11:56:57Z (GMT). No. of bitstreams: 1 10.1006-jmva.1999.1875.pdf: 224833 bytes, checksum: c83c9685d67efe77c5545bd316cd188f (MD5)en
dc.identifier.doi10.1006/jmva.1999.1875en_US
dc.identifier.issn0047-259X
dc.identifier.urihttp://hdl.handle.net/11693/11135
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1006/jmva.1999.1875en_US
dc.source.titleJournal of Multivariate Analysisen_US
dc.subjectBivariate distributionen_US
dc.subjectTruncation/censoringen_US
dc.subjectKernel density estimatorsen_US
dc.titleBivariate density estimation with randomly truncated dataen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1006-jmva.1999.1875.pdf
Size:
219.56 KB
Format:
Adobe Portable Document Format
Description:
Full printable version