Bivariate density estimation with randomly truncated data
dc.citation.epage | 115 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 88 | en_US |
dc.citation.volumeNumber | 74 | en_US |
dc.contributor.author | Gürler, Ü. | en_US |
dc.contributor.author | Prewitt, K. | en_US |
dc.date.accessioned | 2015-07-28T11:56:57Z | |
dc.date.available | 2015-07-28T11:56:57Z | |
dc.date.issued | 2000 | en_US |
dc.department | Department of Industrial Engineering | en_US |
dc.description.abstract | In this study bivariate kernel density estimators are considered when a component is subject to random truncation. In bivariate truncation models one observes the i.i.d. samples from the triplets (T, Y, X) only if T less than or equal to 1: In this set-up, Y is said to be left truncated by T and T is right truncated by Y. We consider the estimation of the bivariate density function of (Y, X) via nonparametric kernel methods where Y is the variable of interest and X a covariate. We establish an i.i.d, representation of the bivariate distribution function estimator and show that the remainder term achieves an improved order of O(n(-1) In n), which is desirable fur density estimation purposes. Expressions are then provided for the bias and the variance of the estimators. Finally some simulation results are presented. (C) 2000 Academic Press | en_US |
dc.description.provenance | Made available in DSpace on 2015-07-28T11:56:57Z (GMT). No. of bitstreams: 1 10.1006-jmva.1999.1875.pdf: 224833 bytes, checksum: c83c9685d67efe77c5545bd316cd188f (MD5) | en |
dc.identifier.doi | 10.1006/jmva.1999.1875 | en_US |
dc.identifier.issn | 0047-259X | |
dc.identifier.uri | http://hdl.handle.net/11693/11135 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1006/jmva.1999.1875 | en_US |
dc.source.title | Journal of Multivariate Analysis | en_US |
dc.subject | Bivariate distribution | en_US |
dc.subject | Truncation/censoring | en_US |
dc.subject | Kernel density estimators | en_US |
dc.title | Bivariate density estimation with randomly truncated data | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.1006-jmva.1999.1875.pdf
- Size:
- 219.56 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version