Stability and electronic properties of monolayer and multilayer structures of group-IV elements and compounds of complementary groups in biphenylene network

Date

2022-01-07

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physical Review B.

Print ISSN

2469-9950

Electronic ISSN

2469-9969

Publisher

American Physical Society

Volume

105

Issue

3

Pages

035408-1 - 035408-9

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

We predict that specific group-IV elements and IV-IV, III-V, and II-VI compounds can form stable, freestanding two-dimensional (2D) monolayers consisting of octagon, hexagon, and square rings (ohs), in which the threefold coordination of atoms is preserved to allow sp2-type hybridization. These monolayers can also construct bilayers, multilayers, three-dimensional (3D) layered van der Waals solids, and 3D crystals with strong vertical bonds between layers as well as quasi-one-dimensional nanotubes and nanoribbons with diverse edge geometries. All these ohs structures can constitute a large class of 2D materials ranging from good metals to wide bandgap semiconductors and display physical and chemical properties rather different from those of their counterparts in the hexagonal (honeycomb) network. The metallic state of freestanding 2D C, Si, and Ge ohs monolayers and 3D C ohs bulk contrast, respectively, with graphene, silicene, germanene, and graphite.

Course

Other identifiers

Book Title

Keywords

Citation