Optimal oblivious routing under linear and ellipsoidal uncertainty
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In telecommunication networks, a common measure is the maximum congestion (i.e., utilization) on edge capacity. As traffic demands are often known with a degree of uncertainty, network management techniques must take into account traffic variability. The oblivious performance of a routing is a measure of how congested the network may get, in the worst case, for one of a set of possible traffic demands. We present two models to compute, in polynomial time, the optimal oblivious routing: a linear model to deal with demands bounded by box constraints, and a second-order conic program to deal with ellipsoidal uncertainty, i.e., when a mean-variance description of the traffic demand is given. A comparison between the optimal oblivious routing and the well-known OSPF routing technique on a set of real-world networks shows that, for different levels of uncertainty, optimal oblivious routing has a substantially better performance than OSPF routing.