Maximizing benefit of classifications using feature intervals
dc.citation.epage | 345 | en_US |
dc.citation.spage | 339 | en_US |
dc.citation.volumeNumber | 2773 | en_US |
dc.contributor.author | İkizler, Nazlı | en_US |
dc.contributor.author | Güvenir, H. Altay | en_US |
dc.coverage.spatial | Oxford, UK | en_US |
dc.date.accessioned | 2016-02-08T11:55:23Z | |
dc.date.available | 2016-02-08T11:55:23Z | en_US |
dc.date.issued | 2003 | en_US |
dc.department | Department of Computer Engineering | en_US |
dc.description | Date of Conference: KES: International Conference on Knowledge-Based and Intelligent Information and Engineering Systems 7th INternational Conference | en_US |
dc.description | Date of Conference: September 2003 | en_US |
dc.description.abstract | There is a great need for classification methods that can properly handle asymmetric cost and benefit constraints of classifications. In this study, we aim to emphasize the importance of classification benefits by means of a new classification algorithm, Benefit-Maximizing classifier with Feature Intervals (BMFI) that uses feature projection based knowledge representation. Empirical results show that BMFI has promising performance compared to recent cost-sensitive algorithms in terms of the benefit gained. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T11:55:23Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2003 | en_US |
dc.identifier.doi | 10.1007/978-3-540-45224-9_48 | en_US |
dc.identifier.doi | 10.1007/978-3-540-45224-9 | en_US |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/11693/27510 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Springer, Berlin, Heidelberg | en_US |
dc.relation.isversionof | https://doi.org/10.1007/978-3-540-45224-9_48 | en_US |
dc.relation.isversionof | https://doi.org/10.1007/978-3-540-45224-9 | en_US |
dc.source.title | Knowledge-Based Intelligent Information and Engineering Systems | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Classification (of information) | en_US |
dc.subject | Constraint Theory | en_US |
dc.subject | Data Mining | en_US |
dc.subject | Error Analysis | en_US |
dc.subject | Knowledge Representation | en_US |
dc.subject | Matrix Algebra | en_US |
dc.subject | Set Theory | en_US |
dc.subject | Knowledge Based Systems | en_US |
dc.subject | Knowledge Representation | en_US |
dc.subject | Benefit-Maximizing Classifier with Feature Intervals (BMFI) | en_US |
dc.subject | Cost-Sensitive Classification | en_US |
dc.subject | Cost-Sensitive Learning | en_US |
dc.subject | Feature Intervals | en_US |
dc.subject | Learning Systems | en_US |
dc.subject | Classification (of information) | en_US |
dc.subject | Asymmetric Costs | en_US |
dc.subject | Classification Algorithm | en_US |
dc.subject | Classification Methods | en_US |
dc.subject | Cost-Sensitive Algorithm | en_US |
dc.subject | Feature Projection | en_US |
dc.title | Maximizing benefit of classifications using feature intervals | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Maximizing_benefit_of_classifications_using_feature_intervals.pdf
- Size:
- 128.17 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version