Retrieving Turkish prior legal cases with deep learning

buir.advisorKoç, Aykut
dc.contributor.authorÖztürk, Ceyhun Emre
dc.date.accessioned2023-07-14T11:07:22Z
dc.date.available2023-07-14T11:07:22Z
dc.date.copyright2023-06
dc.date.issued2023-06
dc.date.submitted2023-07-11
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionIncludes bibliographical references (leaves 32-41).en_US
dc.description.abstractThis study utilizes deep learning models to retrieve prior legal cases in the Court of Cassation in Turkey. Given the vast legal databases that legal professionals need to navigate and the ability of computers to handle large amounts of text quickly, information retrieval algorithms prove beneficial for legal practitioners. In this thesis, we introduce our legal recurrent neural network (RNN) models and the BERTurk-Legal model. We also introduce dense word embeddings for the Turkish legal domain. Moreover, we employ RNN autoencoders, Legal RNN autoencoders, combinations of RNN autoencoders with BM25 algorithms, and BERTurk-Legal to retrieve prior legal cases. We obtain the best results with the BERTurk-Legal model.
dc.description.statementofresponsibilityby Ceyhun Emre Öztürk
dc.format.extentxi, 41 leaves : color illustrations, charts ; 30 cm.
dc.identifier.itemidB162220
dc.identifier.urihttps://hdl.handle.net/11693/112417
dc.language.isoEnglish
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectLaw
dc.subjectDeep learning
dc.subjectInformation retrieval
dc.subjectNLP in law
dc.subjectAI in law
dc.subjectPrior legal case retrieval
dc.subjectNatural language processing
dc.titleRetrieving Turkish prior legal cases with deep learning
dc.title.alternativeDerin öğrenme ile Türkçe emsal karar bulma
dc.typeThesis
thesis.degree.disciplineElectrical and Electronic Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
B162220.pdf
Size:
637.58 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: