Molten Salt Assisted Self-Assembly (MASA) : synthesis of mesoporous silica-ZnO and mesoporous CdO thin films

buir.advisorDağ, Ömer
dc.contributor.authorKarakaya, Cüneyt
dc.date.accessioned2016-01-08T18:20:56Z
dc.date.available2016-01-08T18:20:56Z
dc.date.issued2012
dc.descriptionAnkara : The Department of Chemistry, Bilkent University, 2012.en_US
dc.descriptionThesis (Master's) -- Bilkent University, 2012.en_US
dc.descriptionIncludes bibliographical references leaves 73-82.en_US
dc.description.abstractA series of mesostructured salt-silica-two surfactants (salt is [Zn(H2O)6](NO3)2, ZnX or [Cd(H2O)4](NO3)2, CdYand surfactants are cetyltrimethylammonium bromide (CTAB) and 10-lauryl ether, C12H25(OCH2CH2)10OH, C12EO10) thin films were synthesized by changing the Zn(II) or Cd(II)/SiO2 mole ratios. The films were prepared through spin coating of a clear solution of all the ingredients (salt, CTAB, C12E10, silica source (tetramethyl orthosilicate,TMOS, and water) and denoted as meso-silica-ZnX-n and meso-silica-CdY-n, where n is Zn(II) or Cd(II)/SiO2 mole ratios. The synthesis conditions were optimized by using the meso-silica-ZnX-1.14 and meso-silica-CdY-1.14 films and XRD, FT-IR spectroscopy, POM and SEM techniques. The stability of the films, especially in the high salt concentrations, was achieved above the melting point of salts. Slow calcination of the films, starting from the melting point of the salt to 450 oC has produced the mesoporous silica-metal oxide (ZnO and CdO) thin films, and denoted as meso-silica-ZnO-n and meso-silica-CdO-n, with n of 0.29, 0.57, 0.86, 1.14, and 1.43. The calcination process was monitored by measuring the FT-IR spectra and XRD patterns at different temperatures. Structural properties of the mesoporous films have been investigated using FT-IR spectroscopy, XRD, N2 sorption measurements, UV-Vis spectroscopy, SEM, TEM and EDS techniques. It has been found that the meso-silicaZnO-n and meso-silica-CdO-n films consist of nanocrystalline metal oxide nanoplates on the silica pore walls of the mesoporous framework. The formation of nanoplates of metal oxides was confirmed by etching the silica walls using diluted HF solution and by reacting with H2S and H2Se gases. The etching process produced CdO nanoplates without silica framework. The H2S and H2Se reactions with the CdO nanoplates or meso-silica-CdO have converted them to CdS and CdSe nanoplates or meso-silica-CdS and meso-silica-CdSe, respectively. Finally, a hypothetical surface coverage of metal oxide nanoplates has been calculated by combining the data of N2 sorption measurements, UV-Vis spectroscopy and TEM images and found that there is a full coverage of CdO and partial coverage of ZnO over silica walls in the meso-silica-CdO-n and meso-silica-ZnO-n thin films, respectively.en_US
dc.description.provenanceMade available in DSpace on 2016-01-08T18:20:56Z (GMT). No. of bitstreams: 1 0006302.pdf: 4029726 bytes, checksum: d62ec15b6658d5447aa6d1995b01f515 (MD5)en
dc.description.statementofresponsibilityKarakaya, Cüneyten_US
dc.format.extentxiii, 83 leaves, illustrationsen_US
dc.identifier.itemidB131813
dc.identifier.urihttp://hdl.handle.net/11693/15575
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMesoporous ZnOen_US
dc.subjectMesoporous CdOen_US
dc.subjectMesoporous silicaen_US
dc.subjectThin Filmsen_US
dc.subjectLyotropic liquid crystalsen_US
dc.subject.lccTA418.9.T45 K37 2012en_US
dc.subject.lcshThin films.en_US
dc.subject.lcshPorous materials.en_US
dc.subject.lcshLiquid crystals.en_US
dc.titleMolten Salt Assisted Self-Assembly (MASA) : synthesis of mesoporous silica-ZnO and mesoporous CdO thin filmsen_US
dc.typeThesisen_US
thesis.degree.disciplineChemistry
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0006302.pdf
Size:
3.84 MB
Format:
Adobe Portable Document Format