Robust adaptive filtering algorithms for α-stable random processes
buir.contributor.author | Arıkan, Orhan | |
buir.contributor.author | Çetin, A. Enis | |
buir.contributor.orcid | Arıkan, Orhan|0000-0002-3698-8888 | |
buir.contributor.orcid | Çetin, A. Enis|0000-0002-3449-1958 | |
dc.citation.epage | 202 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 198 | en_US |
dc.citation.volumeNumber | 46 | en_US |
dc.contributor.author | Aydin, G. | en_US |
dc.contributor.author | Arıkan, Orhan | en_US |
dc.contributor.author | Çetin, A. Enis | en_US |
dc.date.accessioned | 2016-02-08T10:41:56Z | |
dc.date.available | 2016-02-08T10:41:56Z | |
dc.date.issued | 1999-02 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | A new class of algorithms based on the fractional lower order statistics is proposed for finite-impulse response adaptive filtering in the presence of α-stable processes. It is shown that the normalized least mean p-norm (NLMP) and Douglas' family of normalized least mean square algorithms are special cases of the proposed class of algorithms. A convergence proof for the new algorithm is given by showing that it performs a descent-type update of the NLMP cost function. Simulation studies indicate that the proposed algorithms provide superior performance in impulsive noise environments compared to the existing approaches. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:41:56Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 1999 | en |
dc.identifier.doi | 10.1109/82.752953 | en_US |
dc.identifier.issn | 1057-7130 | |
dc.identifier.uri | http://hdl.handle.net/11693/25271 | |
dc.language.iso | English | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/82.752953 | en_US |
dc.source.title | IEEE Transactions on Circuits and Systems II : Analog and Digital Signal Processing | en_US |
dc.subject | Adaptive filtering | en_US |
dc.subject | FIR filters | en_US |
dc.subject | Mathematical models | en_US |
dc.subject | Probability density function | en_US |
dc.subject | Random processes | en_US |
dc.subject | Spurious signal noise | en_US |
dc.subject | Stability | en_US |
dc.subject | Statistical methods | en_US |
dc.subject | Alpha stable random processes | en_US |
dc.subject | Finite impulse response adaptive filtering | en_US |
dc.subject | Impulsive signals | en_US |
dc.subject | Least mean square algorithms | en_US |
dc.subject | Normalized least mean p norm | en_US |
dc.subject | Adaptive algorithms | en_US |
dc.title | Robust adaptive filtering algorithms for α-stable random processes | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Robust adaptive filtering algorithms for α-stable random processes.pdf
- Size:
- 243.81 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version