Energy relaxations of hot electrons in AlGaN/AlN/GaN heterostructures grown by MOCVD on sapphire and 6H-SiC substrates

Date

2011-08-18

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

The European Physical Journal Applied Physics

Print ISSN

1286-0042

Electronic ISSN

Publisher

E D P Sciences

Volume

55

Issue

3

Pages

30102- 1 - 30102- 6

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
13
downloads

Series

Abstract

In this work, we investigated the hot-electron dynamics of AlGaN/GaN HEMT structures grown by MOCVD on sapphire and SiC substrates at 80 K. High-speed current-voltage measurements and Hall measurements over the temperature range 27-300 K were used to study hot-electron dynamics. At low fields, drift velocity increases linearly, but deviates from the linearity toward high electric fields. Drift velocities are deduced as approximately 6.55 × 10 6 and 6.60 × 106 cm/s at an electric field of around E ∼ 25 kV/cm for samples grown on sapphire and SiC, respectively. To obtain the electron temperature as a function of the applied electric field and power loss as a function of the electron temperature, we used the so-called mobility comparison method with power balance equations. Although their low field carrier transport properties are similar as observed from Hall measurements, hot carrier energy dissipation differs for samples grown on sapphire and SiC substrates. We found that LO-phonon lifetimes are 0.50 ps and 0.32 ps for sapphire and SiC substrates, respectively. A long hot-phonon lifetime results in large non- equilibrium hot phonons. Non-equilibrium hot phonons slow energy relaxation and increase the momentum relaxation. The effective energy relaxation times at high fields are 24 and 65 ps for samples grown on sapphire and SiC substrates, respectively. They increase as the electron temperature decreases.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)