Local convex directions for Hurwitz stable polynomials
dc.citation.epage | 537 | en_US |
dc.citation.issueNumber | 3 | en_US |
dc.citation.spage | 532 | en_US |
dc.citation.volumeNumber | 47 | en_US |
dc.contributor.author | Özgüler, A. B. | en_US |
dc.contributor.author | Saadaoui, K. | en_US |
dc.date.accessioned | 2016-02-08T10:33:38Z | |
dc.date.available | 2016-02-08T10:33:38Z | |
dc.date.issued | 2002 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | A new condition for a polynomial p(s) to be a local convex direction for a Hurwitz stable polynomial q(s) is derived. The condition is in terms of polynomials associated with the even and odd parts of p(s) and q(s), and constitutes a generalization of Rantzer's phase-growth condition for global convex directions. It is used to determine convex directions for certain subsets of Hurwitz stable polynomials. | en_US |
dc.identifier.doi | 10.1109/9.989156 | en_US |
dc.identifier.issn | 0018-9286 | |
dc.identifier.uri | http://hdl.handle.net/11693/24734 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/9.989156 | en_US |
dc.source.title | IEEE Transactions on Automatic Control | en_US |
dc.subject | Convex directions | en_US |
dc.subject | Polynomials | en_US |
dc.subject | Robust control | en_US |
dc.subject | Stability | en_US |
dc.subject | Algorithms | en_US |
dc.subject | Polynomials | en_US |
dc.subject | Robustness (control systems) | en_US |
dc.subject | Theorem proving | en_US |
dc.subject | Global convex directions | en_US |
dc.subject | System stability | en_US |
dc.title | Local convex directions for Hurwitz stable polynomials | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Local convex directions for Hurwitz stable polynomials.pdf
- Size:
- 303.6 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version