Spatially informed voxelwise modeling for naturalistic fMRI experiments

buir.contributor.authorÇelik, Emin
buir.contributor.authorDar, Salman Ul Hassan
buir.contributor.authorYılmaz, Özgür
buir.contributor.authorKeleş, Ümit
buir.contributor.authorÇukur, Tolga
dc.citation.epage757en_US
dc.citation.spage741en_US
dc.citation.volumeNumber186en_US
dc.contributor.authorÇelik, Eminen_US
dc.contributor.authorDar, Salman Ul Hassanen_US
dc.contributor.authorYılmaz, Özgüren_US
dc.contributor.authorKeleş, Ümiten_US
dc.contributor.authorÇukur, Tolgaen_US
dc.date.accessioned2020-02-12T11:42:53Z
dc.date.available2020-02-12T11:42:53Z
dc.date.issued2019
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentInterdisciplinary Program in Neuroscience (NEUROSCIENCE)en_US
dc.departmentNational Magnetic Resonance Research Center (UMRAM)en_US
dc.departmentAysel Sabuncu Brain Research Center (BAM)en_US
dc.description.abstractVoxelwise modeling (VM) is a powerful framework to predict single voxel responses evoked by a rich set of stimulus features present in complex natural stimuli. However, because VM disregards correlations across neighboring voxels, its sensitivity in detecting functional selectivity can be diminished in the presence of high levels of measurement noise. Here, we introduce spatially-informed voxelwise modeling (SPIN-VM) to take advantage of response correlations in spatial neighborhoods of voxels. To optimally utilize shared information, SPIN-VM performs regularization across spatial neighborhoods in addition to model features, while still generating single-voxel response predictions. We demonstrated the performance of SPIN-VM on a rich dataset from a natural vision experiment. Compared to VM, SPIN-VM yields higher prediction accuracies and better capture locally congruent information representations across cortex. These results suggest that SPIN-VM offers improved performance in predicting single-voxel responses and recovering coherent information representations.en_US
dc.embargo.release2020-02-01
dc.identifier.doi10.1016/j.neuroimage.2018.11.044en_US
dc.identifier.issn1053-8119
dc.identifier.urihttp://hdl.handle.net/11693/53309
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.neuroimage.2018.11.044en_US
dc.source.titleNeuroImageen_US
dc.subjectfMRIen_US
dc.subjectVoxelwise modelingen_US
dc.subjectResponse correlationsen_US
dc.subjectCoherent representationen_US
dc.subjectSpatial regularizationen_US
dc.subjectComputational neuroscienceen_US
dc.titleSpatially informed voxelwise modeling for naturalistic fMRI experimentsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spatially_informed_voxelwise_modeling_for_naturalistic_fMRI_experiments (2).pdf
Size:
5.29 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: