Cohomological dimension and cubic surfaces

buir.advisorSertöz, Ali Sinan
dc.contributor.authorTürkmen, İnan Utku
dc.date.accessioned2016-07-01T11:01:10Z
dc.date.available2016-07-01T11:01:10Z
dc.date.issued2004
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractIn this thesis we give necessary and sufficient conditions for a curve C on a given cubic surface Q so that Q − C is affine. We use this to give a simpler proof of cd(P 3 − C) = 1 by using Budach’s method for these curves.We investigate the nature of curves on cubic surfaces such that the cubic surface minus these curves is an affine variety. We give combinatorial conditions for the existence of such curves.en_US
dc.description.provenanceMade available in DSpace on 2016-07-01T11:01:10Z (GMT). No. of bitstreams: 1 0002632.pdf: 204868 bytes, checksum: ea2f019f24fad790a1d957681cd2757f (MD5) Previous issue date: 2004en
dc.description.statementofresponsibilityTürkmen, İnan Utkuen_US
dc.format.extentvii, 28 leavesen_US
dc.identifier.itemidBILKUTUPB084176
dc.identifier.urihttp://hdl.handle.net/11693/29541
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCohomological dimensionen_US
dc.subjectIntersection Theoryen_US
dc.subjectCubic surfacesen_US
dc.subjectDel Pezzo surfacesen_US
dc.subject.lccQA612.3 .T87 2004en_US
dc.subject.lcshHomology theory.en_US
dc.titleCohomological dimension and cubic surfacesen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0002632.pdf
Size:
200.07 KB
Format:
Adobe Portable Document Format
Description:
Full printable version