Page-to-processor assignment techniques for parallel crawlers

Date

2004

Editor(s)

Advisor

Aykanat, Cevdet

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
1
views
10
downloads

Series

Abstract

In less than a decade, the World Wide Web has evolved from a research project to a cultural phenomena effective in almost every facet of our society. The increase in the popularity and usage of the Web enforced an increase in the efficiency of information retrieval techniques used over the net. Crawling is among such techniques and is used by search engines, web portals, and web caches. A crawler is a program which downloads and stores web pages, generally to feed a search engine or a web repository. In order to be of use for its target applications, a crawler must download huge amounts of data in a reasonable amount of time. Generally, the high download rates required for efficient crawling cannot be achieved by single-processor systems. Thus, existing large-scale applications use multiple parallel processors to solve the crawling problem. Apart from the classical parallelization issues such as load balancing and minimization of the communication overhead, parallel crawling poses problems such as overlap avoidance and early retrieval of high quality pages. This thesis addresses parallelization of the crawling task, and its major contribution is mainly on partitioning/page-to-processor assignment techniques applied in parallel crawlers. We propose two new pageto-processor assignment techniques based on graph and hypergraph partitioning, which respectively minimize the total communication volume and the number of messages, while balancing the storage load and page download requests of processors. We implemented the proposed models, and our theoretic approaches have been supported with empirical findings. We also implemented an efficient parallel crawler which uses the proposed models.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)