Nonuniformly sampled data processing using LSTM networks

buir.contributor.authorŞahin, Safa Onur
buir.contributor.authorKozat, Süleyman Serdar
dc.citation.epage1461en_US
dc.citation.issueNumber5en_US
dc.citation.spage1452en_US
dc.citation.volumeNumber30en_US
dc.contributor.authorŞahin, Safa Onuren_US
dc.contributor.authorKozat, Süleyman Serdaren_US
dc.date.accessioned2019-02-21T16:05:52Z
dc.date.available2019-02-21T16:05:52Z
dc.date.issued2019en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractWe investigate classification and regression for nonuniformly sampled variable length sequential data and introduce a novel long short-term memory (LSTM) architecture. In particular, we extend the classical LSTM network with additional time gates, which incorporate the time information as a nonlinear scaling factor on the conventional gates. We also provide forward-pass and backward-pass update equations for the proposed LSTM architecture. We show that our approach is superior to the classical LSTM architecture when there is correlation between time samples. In our experiments, we achieve significant performance gains with respect to the classical LSTM and phased-LSTM architectures. In this sense, the proposed LSTM architecture is highly appealing for the applications involving nonuniformly sampled sequential data. IEEE
dc.description.provenanceMade available in DSpace on 2019-02-21T16:05:52Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018en
dc.identifier.doi10.1109/TNNLS.2018.2869822
dc.identifier.issn2162-237X
dc.identifier.urihttp://hdl.handle.net/11693/50278
dc.language.isoEnglish
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.isversionofhttps://doi.org/10.1109/TNNLS.2018.2869822
dc.source.titleIEEE Transactions on Neural Networks and Learning Systemsen_US
dc.subjectClassificationen_US
dc.subjectLong short-term memory (LSTM)en_US
dc.subjectNonuniform samplingen_US
dc.subjectRecurrent neural networks (RNNs)en_US
dc.subjectRegressionen_US
dc.subjectSupervised learning.en_US
dc.titleNonuniformly sampled data processing using LSTM networksen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nonuniformly_Sampled_Data_Processing_Using_LSTM_Networks.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Description:
Full printable version