Man-made object classification in SAR images using 2-D cepstrum
buir.contributor.author | Çetin, A. Enis | |
buir.contributor.orcid | Çetin, A. Enis|0000-0002-3449-1958 | |
dc.citation.epage | 4 | en_US |
dc.citation.spage | 1 | en_US |
dc.contributor.author | Eryildirim, A. | en_US |
dc.contributor.author | Çetin, A. Enis | en_US |
dc.coverage.spatial | Pasadena, CA, USA | |
dc.date.accessioned | 2016-02-08T11:34:21Z | |
dc.date.available | 2016-02-08T11:34:21Z | |
dc.date.issued | 2009-05 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 4-8 May 2009 | |
dc.description | Conference name: 2009 IEEE Radar Conference | |
dc.description.abstract | In this paper, a novel descriptive feature parameter extraction method from Synthetic Aperture Radar (SAR) images is proposed. The new method is based on the two-dimensional (2-D) real cepstrum. This novel 2-D cepstrum method is compared with principal component analysis (PCA) method by testing over the MSTAR image database. The extracted features are classified using Support Vector Machine (SVM). We demonstrate that discrimination of natural background (clutter) and man-made objects (metal objects) in SAR imagery is possible using the 2-D cepstrum feature parameters. In addition, the computational cost of the cepstrum method is lower than the PCA method. Experimental results are presented. ©2009 IEEE. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T11:34:21Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009 | en |
dc.identifier.doi | 10.1109/RADAR.2009.4976990 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/26737 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | |
dc.relation.isversionof | http://dx.doi.org/10.1109/RADAR.2009.4976990 | en_US |
dc.source.title | IEEE National Radar Conference - Proceedings | en_US |
dc.subject | Cepstrum | en_US |
dc.subject | Cepstrum method | en_US |
dc.subject | Computational costs | en_US |
dc.subject | Feature parameters | en_US |
dc.subject | Image database | en_US |
dc.subject | Man made objects | en_US |
dc.subject | Natural backgrounds | en_US |
dc.subject | PCA method | en_US |
dc.subject | SAR imagery | en_US |
dc.subject | SAR Images | en_US |
dc.subject | Synthetic aperture radar images | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | Image retrieval | en_US |
dc.subject | Imaging systems | en_US |
dc.subject | Metal recovery | en_US |
dc.subject | Object recognition | en_US |
dc.subject | Parameter extraction | en_US |
dc.subject | Principal component analysis | en_US |
dc.subject | Smelting | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Synthetic apertures | en_US |
dc.subject | Synthetic aperture radar | en_US |
dc.title | Man-made object classification in SAR images using 2-D cepstrum | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Man-made object classification in SAR images using 2-D cepstrum.pdf
- Size:
- 364.31 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version