İnsan hareketlerinin PIR-sensör tabanlı bir sistemle sınıflandırılması
buir.contributor.author | Çetin, A. Enis | |
buir.contributor.orcid | Çetin, A. Enis|0000-0002-3449-1958 | |
dc.citation.epage | 4 | en_US |
dc.citation.spage | 1 | en_US |
dc.contributor.author | Urfalıoğlu, Onay | en_US |
dc.contributor.author | Soyer, Emin B. | en_US |
dc.contributor.author | Töreyin, B. Uğur | en_US |
dc.contributor.author | Çetin, A. Enis | en_US |
dc.coverage.spatial | Aydın, Turkey | |
dc.date.accessioned | 2016-02-08T11:37:08Z | |
dc.date.available | 2016-02-08T11:37:08Z | |
dc.date.issued | 2008-04 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 20-22 April 2008 | |
dc.description | Conference name: IEEE 16th Signal Processing, Communication and Applications Conference, SIU 2008 | |
dc.description.abstract | Bu bildiride, tek bir pasif kızılberisi sensörü (PIR) kullanarak beş farklı insan hareketi ve bir hareketsiz arkaplan gürültüsünden oluşan toplam 6 çeşit olay için bir sınıflandırma yöntemi önerilmiştir. Otomatik olay sınıflandırma sistemleri, dinamik süreçler barındıran ortamlar için yeni uygulamalara fırsat vermektedir. Olay sınıflandırması, herhangi bir sensör ya da sensör dizisinden gelen işaretlerin analiz edilerek, belirli bir olaya ait dinamik süreçle eşleştirilmesi olarak tanımlanabilir. Genelde, insan etkinliklerinin izlenmesi uygulamalarında kamera ve mikrofonlar kullanılmaktadır. Bir alternatif veya bir tümleyici yaklaşım olarak, bahsi geçen uygulamalarda PIR sensörleri de kullanılabilir. Bu bildiride, olay sınıflandırılması için Bayes yaklaşımına dayalı olan şartlı Gauss karışım modeli (CGMM) kullanımı önerilmektedir. Deneysel çalışmalarda, bu yaklaşımın başarılı olduğu görülmüştür. | |
dc.description.abstract | In this paper, we use a modified Passive Infrared Radiation or Pyroelectric InfraRed (PIR) sensor to classify 5 different human motion events with one additional 'no action' event. Event detection enables new applications in environments hosting dynamic processes. Typical event detection applications are based on audio or video sensor data. Given a data stream, often the task is to find or classify specific dynamic processes. Most of the applications for the monitoring of human activities in an environment are based on video sensor data. As an alternative or complementary approach, low cost PIR sensors can be used for such applications. The classification is done by a bayesian approach using Conditional Gaussian Mixture Models (CGMM) trained for each class. We show in experiments that using PIR-sensors, different human motion events in a room can be successfully detected. ©2008 IEEE. | |
dc.description.provenance | Made available in DSpace on 2016-02-08T11:37:08Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2008 | en |
dc.identifier.doi | 10.1109/SIU.2008.4632611 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/26831 | |
dc.language.iso | Turkish | en_US |
dc.publisher | IEEE | |
dc.relation.isversionof | http://dx.doi.org/10.1109/SIU.2008.4632611 | en_US |
dc.source.title | IEEE 16th Signal Processing, Communication and Applications Conference, SIU 2008 | en_US |
dc.subject | Bayesian approaches | en_US |
dc.subject | Data streams | en_US |
dc.subject | Dynamic processes | en_US |
dc.subject | Event classifications | en_US |
dc.subject | Event detections | en_US |
dc.subject | Gaussian Mixture models | en_US |
dc.subject | Human activities | en_US |
dc.subject | Human motions | en_US |
dc.subject | Low costs | en_US |
dc.subject | New applications | en_US |
dc.subject | Pir sensors | en_US |
dc.subject | Pyroelectric infrared sensors | en_US |
dc.subject | Video sensors | en_US |
dc.subject | Animal cell culture | en_US |
dc.subject | Applications | en_US |
dc.subject | Bayesian networks | en_US |
dc.subject | Infrared radiation | en_US |
dc.subject | Signal processing | en_US |
dc.subject | Sensors | en_US |
dc.title | İnsan hareketlerinin PIR-sensör tabanlı bir sistemle sınıflandırılması | en_US |
dc.title.alternative | PIR-sensor based human motion event classification | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- PIR-sensor based human motion event classification [İnsan hareketlerinin PIR-sensör tabanli bir sistemle siniflandirilmasi].pdf
- Size:
- 618.82 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version