Modular equations of degrees 13, 29, and 61
buir.contributor.author | Güloğlu, Ahmet M. | |
buir.contributor.author | Yesilyurt, Hamza | |
dc.citation.issueNumber | 3 | |
dc.citation.volumeNumber | 62 | |
dc.contributor.author | Güloğlu, Ahmet M. | |
dc.contributor.author | Yesilyurt, Hamza | |
dc.date.accessioned | 2024-03-11T06:41:19Z | |
dc.date.available | 2024-03-11T06:41:19Z | |
dc.date.issued | 2023-11-21 | |
dc.department | Department of Mathematics | |
dc.description.abstract | Schröter-type theta function identities were very instrumental in proving modular equations. In this paper, by employing a generalization of this identity, we prove for the first time a modular equation of degree 61. Furthermore, new modular equations of degrees 13 and 29 are obtained. | |
dc.description.provenance | Made available in DSpace on 2024-03-11T06:41:19Z (GMT). No. of bitstreams: 1 Modular_equations_of_degrees_13_29_and_61.pdf: 287341 bytes, checksum: 553e810d46d12ea25d18485e4f0b034c (MD5) Previous issue date: 2023-11-21 | en |
dc.identifier.doi | 10.1007/s11139-023-00794-2 | |
dc.identifier.eissn | 1572-9303 | |
dc.identifier.issn | 1382-4090 | |
dc.identifier.uri | https://hdl.handle.net/11693/114472 | |
dc.language.iso | en_US | |
dc.publisher | Springer New York LLC | |
dc.relation.isversionof | https://doi.org/10.1007/s11139-023-00794-2 | |
dc.rights | CC BY 4.0 Deed (Attribution 4.0 International) | |
dc.rights.uri | https://creativecommons.org/licenses/by/2.0/ | |
dc.source.title | The Ramanujan Journal | |
dc.subject | Theta functions | |
dc.subject | Modular equations | |
dc.subject | Rogers’ Method | |
dc.title | Modular equations of degrees 13, 29, and 61 | |
dc.type | Article |