Homozygosity at variant MLH1 can lead to secondary mutation in NF1, neurofibromatosis type I and early onset leukemia
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Heterozygous germ-line variants of DNA mismatch repair (MMR) genes predispose individuals to hereditary non-polyposis colorectal cancer. Several independent reports have shown that individuals constitutionally homozygous for MMR allelic variants develop early onset hematological malignancies often associated to features of neurofibromatosis type 1 (NF1) syndrome. The genetic mechanism of NF1 associated to MMR gene deficiency is not fully known. We report here that a child with this form of NF1 displays a heterozygous NF1 gene mutation (c.3721C > T), in addition to a homozygous MLH1 gene mutation (c.676C > T) leading to a truncated MLH1 protein (p.R226X). The parents did not display NF1 features nor the NF1 mutation. This new NF1 gene mutation is recurrent and predicts a truncated neurofibromin (p.R1241X) lacking its GTPase activating function, as well as all C-terminally located functional domains. Our findings suggest that NF1 disease observed in individuals homozygous for deleterious MMR variants may be due to a concomitant NF1 gene mutation. The presence of both homozygous MLH1 and heterozygous NF1 mutation in the child studied here also provides a mechanistic explanation for early onset malignancies that are observed in affected individuals. It also provides a model for cooperation between genetic alterations in human carcinogenesis. © 2007 Elsevier B.V. All rights reserved.