Defect-mode-like transmission and localization of light in photonic crystals without defects

Date

2010-10-29

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Physical Review B - Condensed Matter and Materials Physics

Print ISSN

1098-0121

Electronic ISSN

Publisher

The American Physical Society

Volume

82

Issue

16

Pages

165131-1 - 165131-7

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

It is shown that far- and near-field effects, which are similar to those arising in transmission through finite-thickness photonic crystals (PCs) with structural defects, can be obtained in the conventional defect-free dielectric square-lattice PCs. Multiple narrow peaks of total transmission can appear within a frequency range, where the noncircular isofrequency dispersion contours of one type are quickly transformed for a higher-order Floquet-Bloch wave to the noncircular contours of the other type, leading to a frequency-domain passband being very narrow within a certain range of variation of the angles of incidence. In this regime, the mirror reflectance of the equivalent Fabry-Pérot resonator takes rather large values, which correspond to large values of Q factor and group index of refraction, strong field localization, and good isolation of the transmission peaks from each other. In some examples presented, Q factor exceeds 104. © 2010 The American Physical Society.

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)