Activity recognition invariant towearable sensor unit orientation using differential rotational transformations represented by quaternions
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Wearable motion sensors are assumed to be correctly positioned and oriented in most of the existing studies. However, generic wireless sensor units, patient health and state monitoring sensors, and smart phones and watches that contain sensors can be differently oriented on the body. The vast majority of the existing algorithms are not robust against placing the sensor units at variable orientations. We propose a method that transforms the recorded motion sensor sequences invariantly to sensor unit orientation. The method is based on estimating the sensor unit orientation and representing the sensor data with respect to the Earth frame. We also calculate the sensor rotations between consecutive time samples and represent them by quaternions in the Earth frame. We incorporate our method in the pre-processing stage of the standard activity recognition scheme and provide a comparative evaluation with the existing methods based on seven state-of-the-art classifiers and a publicly available dataset. The standard system with fixed sensor unit orientations cannot handle incorrectly oriented sensors, resulting in an average accuracy reduction of 31.8%. Our method results in an accuracy drop of only 4.7% on average compared to the standard system, outperforming the existing approaches that cause an accuracy degradation between 8.4 and 18.8%. We also consider stationary and non-stationary activities separately and evaluate the performance of each method for these two groups of activities. All of the methods perform significantly better in distinguishing non-stationary activities, our method resulting in an accuracy drop of 2.1% in this case. Our method clearly surpasses the remaining methods in classifying stationary activities where some of the methods noticeably fail. The proposed method is applicable to a wide range of wearable systems to make them robust against variable sensor unit orientations by transforming the sensor data at the pre-processing stage.