Fermi level pinning ınduced by doping in air stable n type organic semiconductor

buir.contributor.authorSalzner, Ulrike
dc.citation.epage73en_US
dc.citation.issueNumber1en_US
dc.citation.spage66en_US
dc.citation.volumeNumber2en_US
dc.contributor.authorSharma, S.
dc.contributor.authorGhosh, S.
dc.contributor.authorAhmed, T.
dc.contributor.authorRay, S.
dc.contributor.authorIslam, S.
dc.contributor.authorSalzner, Ulrike
dc.contributor.authorGhosh, A.
dc.contributor.authorSeki, S.
dc.contributor.authorPatil, S.
dc.date.accessioned2021-03-16T06:45:56Z
dc.date.available2021-03-16T06:45:56Z
dc.date.issued2020
dc.departmentDepartment of Chemistryen_US
dc.description.abstractDoping of organic semiconductors enhances the performance of optoelectronic devices. Although p-type doping is well studied and successfully deployed in optoelectronic devices, air stable ntype doping was still elusive. We succeeded with n-type doping of organic semiconductors using molecular dopant N-DMBI under ambient conditions. Strikingly, n-type doping accounts for a gigantic increase of the photoconductivity of doped thin films. Electrical and optical properties of the n-doped molecular semiconductor were investigated by temperature dependent conductivity, electron paramagnetic resonance (EPR), and flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements. A significant reduction and saturation in activation energy with increasing doping level clearly suggests the formation of an impurity band and enhancement in carrier density. Computational studies reveal the formation of a charge transfer complex mediated by hydrogen abstraction as the rate-determining step for the doping mechanism. The colossal enhancement of photoconductivity induced by n-doping is a significant step toward optoelectronic devices made of molecular semiconductors.en_US
dc.description.provenanceSubmitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2021-03-16T06:45:56Z No. of bitstreams: 1 Fermi_Level_Pinning_Induced_by_Doping_in_Air_Stable_n-Type_Organic_Semiconductor.pdf: 1583887 bytes, checksum: e2dcdc5f916a1860c5bb5a23549db4dc (MD5)en
dc.description.provenanceMade available in DSpace on 2021-03-16T06:45:56Z (GMT). No. of bitstreams: 1 Fermi_Level_Pinning_Induced_by_Doping_in_Air_Stable_n-Type_Organic_Semiconductor.pdf: 1583887 bytes, checksum: e2dcdc5f916a1860c5bb5a23549db4dc (MD5) Previous issue date: 2020en
dc.identifier.doi10.1021/acsaelm.9b00742en_US
dc.identifier.issn2637-6113
dc.identifier.urihttp://hdl.handle.net/11693/75930
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttps://doi.org/10.1021/acsaelm.9b00742en_US
dc.source.titleACS Applied Electronic Materialsen_US
dc.subjectMolecular dopingen_US
dc.subjectOrganic semiconductoren_US
dc.subjectPhotoconductivityen_US
dc.subjectN-DMBIen_US
dc.subjectFermi levelen_US
dc.titleFermi level pinning ınduced by doping in air stable n type organic semiconductoren_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fermi_Level_Pinning_Induced_by_Doping_in_Air_Stable_n-Type_Organic_Semiconductor.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: