2D RF pulse design for optimized reduced field-of-view imaging at 1.5T and 3T
buir.contributor.author | Eren, Orhun Caner | |
buir.contributor.author | Barlas, Bahadır Alp | |
buir.contributor.author | Sarıtaş, Emine Ülkü | |
buir.contributor.orcid | Barlas, Bahadır Alp|0000-0001-6963-9644 | |
buir.contributor.orcid | Sarıtaş, Emine Ülkü|0000-0001-8551-1077 | |
dc.citation.epage | 216 | en_US |
dc.citation.spage | 210 | en_US |
dc.citation.volumeNumber | 85 | en_US |
dc.contributor.author | Eren, Orhun Caner | |
dc.contributor.author | Barlas, Bahadır Alp | |
dc.contributor.author | Sarıtaş, Emine Ülkü | |
dc.date.accessioned | 2023-02-15T07:37:13Z | |
dc.date.available | 2023-02-15T07:37:13Z | |
dc.date.issued | 2021-10-22 | |
dc.department | Aysel Sabuncu Brain Research Center (BAM) | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.department | National Magnetic Resonance Research Center (UMRAM) | en_US |
dc.description.abstract | Two-dimensional spatially selective radiofrequency (2DRF) excitation pulses are widely used for reduced field-of-view (FOV) targeted high-resolution diffusion weighted imaging (DWI), especially for anatomically small regions such as the spinal cord and prostate. The reduction in FOV achieved by 2DRF pulses significantly improve the in-plane off-resonance artifacts in single-shot echo planar imaging (ss-EPI). However, long durations of 2DRF pulses create a sensitivity to through-plane off-resonance effects, especially at 3 T where the off-resonance field doubles with respect to 1.5 T. This work proposes a parameter-based optimization approach to design 2DRF pulses with blips along the slice-select axis, with the goal of maximizing slab sharpness while minimizing off-resonance effects on 1.5 T and 3 T MRI scanners, separately. Extensive Bloch simulations are performed to evaluate the off-resonance robustness of 2DRF pulses. Three different metrics are proposed to quantify the similarity between the actual and ideal 2D excitation profiles, based on the signals within and outside the targeted reduced-FOV region. In addition, simulations on a digital brain phantom are performed for visual comparison purposes. The results show that maintaining a sharp profile is the primary design requirement at 1.5 T, necessitating the usage of relatively high slab sharpness with a time-bandwidth product (TBW) around 8–10. In contrast, off-resonance robustness is the primary design requirement at 3 T, requiring the usage of a moderate slap sharpness with TBW around 5–7. | en_US |
dc.description.provenance | Submitted by Ezgi Uğurlu (ezgi.ugurlu@bilkent.edu.tr) on 2023-02-15T07:37:13Z No. of bitstreams: 1 2D_RF_pulse_design_for_optimized_reduced_field-of-view_imaging_at_1.5T_and_3T.pdf: 1847847 bytes, checksum: 858a2671dc459322c91324b668918b04 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2023-02-15T07:37:13Z (GMT). No. of bitstreams: 1 2D_RF_pulse_design_for_optimized_reduced_field-of-view_imaging_at_1.5T_and_3T.pdf: 1847847 bytes, checksum: 858a2671dc459322c91324b668918b04 (MD5) Previous issue date: 2021-10-22 | en |
dc.embargo.release | 2023-10-22 | |
dc.identifier.doi | 10.1016/j.mri.2021.10.021 | en_US |
dc.identifier.eissn | 1873-5894 | |
dc.identifier.issn | 0730725X | |
dc.identifier.uri | http://hdl.handle.net/11693/111298 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier Inc. | en_US |
dc.relation.isversionof | https://doi.org/10.1016/j.mri.2021.10.021 | en_US |
dc.source.title | Magnetic Resonance Imaging | en_US |
dc.subject | Reduced field-of-view imaging | en_US |
dc.subject | Two-dimensional RF pulse | en_US |
dc.subject | Excitation profile | en_US |
dc.subject | Off-resonance robustness | en_US |
dc.subject | Diffusion weighted imaging | en_US |
dc.title | 2D RF pulse design for optimized reduced field-of-view imaging at 1.5T and 3T | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 2D_RF_pulse_design_for_optimized_reduced_field-of-view_imaging_at_1.5T_and_3T.pdf
- Size:
- 1.76 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: