Physical layer security over frequency selective fading channels

Limited Access
This item is unavailable until:
2016-07-30

Date

2016-01

Editor(s)

Advisor

Duman, Tolga M.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Bilkent University

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

The inherent open nature of the transmission medium makes security a challenging issue in wireless networks. Physical layer security, which is an alternative or a complement to the cryptographic approaches, exploits the differences between the physical properties of different channels in order to provide secrecy. The idea is to ensure that the received signal at an eavesdropper is degraded compared to that of the legitimate receiver in some sense which guarantees that the confidential messages cannot be recovered by an unintended receiver. Over the last decade, various researchers have studied fundamental limits of physical layer security under different wiretap channel models, including Gaussian and fading channels, and with different assumptions on the transmitter’s knowledge on the channel state information. In this thesis, we study physical layer security over frequency selective fading channels modelling certain wireless links. Specifically, we investigate optimal and suboptimal power allocation schemes across frequencies with perfect and partial channel state information at the transmitter with the objective of providing secrecy. We demonstrate that frequency selectivity allows for positive secrecy rates even though the eavesdropper’s channel is not a degraded version of the desired user’s channel. We also analyse the impact of user mobility and the resulting time variations in the wireless medium on the achievable secrecy rates. Furthermore, we consider quantized channel state information at the transmitter and evaluate the secrecy rate loss due to limited feedback from the legitimate receiver to the transmitter. Our results reveal that the partial channel state information at the transmitter can still be helpful in providing positive secrecy rates.

Course

Other identifiers

Book Title

Citation

item.page.isversionof