A spectral vanishing viscosity method for large-eddy simulations of two-fluid flow

Available
The embargo period has ended, and this item is now available.

Date

2020-12

Editor(s)

Advisor

Biancofiore, Luca

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

DNS studies of turbulent flows have proved to be inefficient in terms of time and computational resources. On the other hand, Large-eddy simulation (LES) is an effective approach towards modeling turbulence. The current research applies an extension of the Spectral Vanishing Viscosity (SVV) method to finite differences. This straight-forward LES technique allows turbulence modeling without the need for filtering or upwinding. The result is a hybrid DNS/LES Solver. The solver is applied to the two-fluid problem of falling liquid film in the presence of turbulent gas. Numerical simulation of falling liquid films requires a mathematical representation of the multiphase flow. A Direct Numerical Simulation (DNS) solver implementing finite volumes is used to solve the Navier-Stokes equations for the liquid phase. The Front Tracking method is used to model the moving gas-liquid interface. Gravity-driven falling liquid films are commonplace in engineering applications. Perturbed falling films dramatically increase the heat/mass transport across the interface compared to flat films, which highlights the significance of studying interfacial flows. The present research aims to develop a numerical tool, which will be used to further investigate falling liquid film phenomena.

Course

Other identifiers

Book Title

Degree Discipline

Mechanical Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)