Forecasting high-frequency stock returns: a comparison of alternative methods
buir.contributor.author | Şensoy, Ahmet | |
dc.citation.epage | 690 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 639 | en_US |
dc.citation.volumeNumber | 313 | en_US |
dc.contributor.author | Akyıldırım, E. | |
dc.contributor.author | Bariviera, A. | |
dc.contributor.author | Nguyen, D. K. | |
dc.contributor.author | Şensoy, Ahmet | |
dc.date.accessioned | 2023-02-17T13:06:58Z | |
dc.date.available | 2023-02-17T13:06:58Z | |
dc.date.issued | 2022-06 | |
dc.department | Department of Management | en_US |
dc.description.abstract | We compare the performance of various advanced forecasting techniques, namely artificial neural networks, k-nearest neighbors, logistic regression, Naïve Bayes, random forest classifier, support vector machine, and extreme gradient boosting classifier to predict stock price movements based on past prices. We apply these methods with the high frequency data of 27 blue-chip stocks traded in the Istanbul Stock Exchange. Our findings reveal that among the selected methodologies, random forest and support vector machine are able to capture both future price directions and percentage changes at a satisfactory level. Moreover, consistent ranking of the methodologies across different time frequencies and train/test set partitions prove the robustness of our empirical findings. | en_US |
dc.description.provenance | Submitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2023-02-17T13:06:58Z No. of bitstreams: 1 Forecasting_high_frequency_stock_returns_a_comparison_of_alternative_methods.pdf: 343782 bytes, checksum: 745c4bf48a94ba71e01a8fe65332fdfc (MD5) | en |
dc.description.provenance | Made available in DSpace on 2023-02-17T13:06:58Z (GMT). No. of bitstreams: 1 Forecasting_high_frequency_stock_returns_a_comparison_of_alternative_methods.pdf: 343782 bytes, checksum: 745c4bf48a94ba71e01a8fe65332fdfc (MD5) Previous issue date: 2022-06 | en |
dc.identifier.doi | 10.1007/s10479-021-04464-8 | en_US |
dc.identifier.issn | 0254-5330 | |
dc.identifier.uri | http://hdl.handle.net/11693/111528 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s10479-021-04464-8 | en_US |
dc.source.title | Annals of Operations Research | en_US |
dc.subject | Algorithmic trading | en_US |
dc.subject | Forecasting | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Stock market | en_US |
dc.title | Forecasting high-frequency stock returns: a comparison of alternative methods | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Forecasting_high_frequency_stock_returns_a_comparison_of_alternative_methods.pdf
- Size:
- 335.72 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: