Forecasting high-frequency stock returns: a comparison of alternative methods

buir.contributor.authorŞensoy, Ahmet
dc.citation.epage690en_US
dc.citation.issueNumber2en_US
dc.citation.spage639en_US
dc.citation.volumeNumber313en_US
dc.contributor.authorAkyıldırım, E.
dc.contributor.authorBariviera, A.
dc.contributor.authorNguyen, D. K.
dc.contributor.authorŞensoy, Ahmet
dc.date.accessioned2023-02-17T13:06:58Z
dc.date.available2023-02-17T13:06:58Z
dc.date.issued2022-06
dc.departmentDepartment of Managementen_US
dc.description.abstractWe compare the performance of various advanced forecasting techniques, namely artificial neural networks, k-nearest neighbors, logistic regression, Naïve Bayes, random forest classifier, support vector machine, and extreme gradient boosting classifier to predict stock price movements based on past prices. We apply these methods with the high frequency data of 27 blue-chip stocks traded in the Istanbul Stock Exchange. Our findings reveal that among the selected methodologies, random forest and support vector machine are able to capture both future price directions and percentage changes at a satisfactory level. Moreover, consistent ranking of the methodologies across different time frequencies and train/test set partitions prove the robustness of our empirical findings.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2023-02-17T13:06:58Z No. of bitstreams: 1 Forecasting_high_frequency_stock_returns_a_comparison_of_alternative_methods.pdf: 343782 bytes, checksum: 745c4bf48a94ba71e01a8fe65332fdfc (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-17T13:06:58Z (GMT). No. of bitstreams: 1 Forecasting_high_frequency_stock_returns_a_comparison_of_alternative_methods.pdf: 343782 bytes, checksum: 745c4bf48a94ba71e01a8fe65332fdfc (MD5) Previous issue date: 2022-06en
dc.identifier.doi10.1007/s10479-021-04464-8en_US
dc.identifier.issn0254-5330
dc.identifier.urihttp://hdl.handle.net/11693/111528
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttps://doi.org/10.1007/s10479-021-04464-8en_US
dc.source.titleAnnals of Operations Researchen_US
dc.subjectAlgorithmic tradingen_US
dc.subjectForecastingen_US
dc.subjectMachine learningen_US
dc.subjectStock marketen_US
dc.titleForecasting high-frequency stock returns: a comparison of alternative methodsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Forecasting_high_frequency_stock_returns_a_comparison_of_alternative_methods.pdf
Size:
335.72 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: