Instance-based regression by partitioning feature projections
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
A new instance-based learning method is presented for regression problems with high-dimensional data. As an instance-based approach, the conventional K-Nearest Neighbor (KNN) method has been applied to both classification and regression problems. Although KNN performs well for classification tasks, it does not perform similarly for regression problems. We have developed a new instance-based method, called Regression by Partitioning Feature Projections (RPFP), to fill the gap in the literature for a lazy method that achieves a higher accuracy for regression problems. We also present some additional properties and even better performance when compared to famous eager approaches of machine learning and statistics literature such as MARS, rule-based regression, and regression tree induction systems. The most important property of RPFP is that it performs much better than all other eager or lazy approaches on many domains that have missing values. If we consider databases today, where there are generally large number of attributes, such sparse domains are very frequent. RPFP handles such missing values in a very natural way, since it does not require all the attribute values to be present in the data set.