Applications of biomaterials in cancer diagnosis and treatment

Date

2013

Editor(s)

Advisor

Akçalı, K. Can

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
8
views
24
downloads

Series

Abstract

Cancer remains to be a major burden of disease worldwide, despite the significant increase in the number of studies that focus on the development of novel diagnostic and treatment strategies. Recently, important part of these studies use biomaterials and their biomedical applications have been investigated extensively, due to their biocompatibility. Among these biomaterials two of them, carbon nanotubes (CNT) and polymer hydrogels have gained great importance due to their unique physical and chemical properties. The current study proposes new approaches that take advantage of these two biomaterials which could be used in the treatment and diagnosis of hepatocellular carcinoma (HCC). We first proposed the usage of CNTs as novel diagnostic tools for the determination of the aggressiveness of HCC. Two cell lines with different epithelial-to-mesenchymal (EMT) status, HUH7 and Snu182 were used and their attachment features on patterned CNT surfaces were compared. Our SEM images and MTT results revealed that the cells with epithelial phenotype (HUH7) attach and proliferate more on CNTs than the cells with mesenchymal phenotype (Snu182) which makes these surfaces promising diagnostic tools to differentiate HCC according to their aggressiveness. Secondly, polymer hydrogels with Dox release were suggested to be promising therapeutics to cure HCC. Our cell viability and cytotoxicity tests showed the inhibition of the proliferation of HCC line, SNU398 in the presence of drug-releasing hydrogels. This suggests the usage of hydrogels as drug delivery vehicles to have enhanced therapeutic efficacies in the HCC therapies.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Molecular Biology and Genetics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type