Automated detection and enhancement of microcalcifications in mammograms using nonlinear subband decomposition
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Attention Stats
Series
Abstract
In this paper, computer-aided detection and enhancement of microcalcifications in mammogram images are considered. The mammogram image is first decomposed into subimages using a `subband' decomposition filter bank which uses nonlinear filters. A suitably identified subimage is divided into overlapping square regions in which skewness and kurtosis as measures of the asymmetry and impulsiveness of the distribution are estimated. All regions with high positive skewness and kurtosis are marked as a regions of interest. Next, an outlier labeling method is used to find the locations of microcalcifications in these regions. An enhanced mammogram image is also obtained by emphasizing the microcalcification locations. Linear and nonlinear subband decomposition structures are compared in terms of their effectiveness in finding microcalcificated regions and their computational complexity. Simulation studies based on real mammogram images are presented.