Counteracting free riding in pure peer-to-peer networks
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The peer-to-peer (P2P) network paradigm has attracted a significant amount of interest as a popular and successful alternative to traditional client-server model for resource sharing and content distribution. However, researchers have observed the existence of high degrees of free riding in P2P networks which poses a serious threat to effectiveness and efficient operation of these networks, and hence to their future. Therefore, eliminating or reducing the impact of free riding on P2P networks has become an important issue to investigate and a considerable amount of research has been conducted on it. In this thesis, we propose two novel solutions to reduce the adverse effects of free riding on P2P networks and to motivate peers to contribute to P2P networks. These solutions are also intended to lead to performance gains for contributing peers and to penalize free riders. As the first solution, we propose a distributed and localized scheme, called Detect and Punish Method (DPM), which depends on detection and punishment of free riders. Our second solution to the free riding problem is a connection-time protocol, called P2P Connection Management Protocol (PCMP), which is based on controlling and managing link establishments among peers according to their contributions. To evaluate the proposed solutions and compare them with other alternatives, we developed a new P2P network simulator and conducted extensive simulation experiments. Our simulation results show that employing our solutions in a P2P network considerably reduces the adverse effects of free riding and improves the overall performance of the network. Furthermore, we observed that P2P networks utilizing the proposed solutions become more robust and scalable.