Forecasting high-frequency excess stock returns via data analytics and machine learning

buir.contributor.authorŞensoy, Ahmet
buir.contributor.orcidŞensoy, Ahmet|0000-0001-7967-5171
dc.citation.epage54en_US
dc.citation.spage1en_US
dc.citation.volumeNumberEarly Viewen_US
dc.contributor.authorAkyıldırım, E.
dc.contributor.authorNguyen, D. K.
dc.contributor.authorŞensoy, Ahmet
dc.contributor.authorŠikić, M.
dc.date.accessioned2022-02-10T07:50:06Z
dc.date.available2022-02-10T07:50:06Z
dc.date.issued2021-11-23
dc.departmentDepartment of Managementen_US
dc.description.abstractBorsa Istanbul introduced data analytics to present additional information about its market conditions. We examine whether this product can be utilized via various machine learning methods to predict intraday excess returns. Accordingly, these analytics provide significant prediction ratios above 50% with ideal profit ratios that can reach up to 33%. Among all the methods considered, XGBoost (logistic regression) performs better in predicting excess returns in the long-term analysis (short-term analysis). Results provide evidence for the benefits of both the analytics and the machine learning methods and raise further discussion on the semistrong market efficiency.en_US
dc.description.provenanceSubmitted by Samet Emre (samet.emre@bilkent.edu.tr) on 2022-02-10T07:50:06Z No. of bitstreams: 1 Forecasting_high-frequency_excess_stock_returns_via_data_analytics_and_machine_learning.pdf: 3322477 bytes, checksum: d5e2f23a688cf534aedac288e5830c1d (MD5)en
dc.description.provenanceMade available in DSpace on 2022-02-10T07:50:06Z (GMT). No. of bitstreams: 1 Forecasting_high-frequency_excess_stock_returns_via_data_analytics_and_machine_learning.pdf: 3322477 bytes, checksum: d5e2f23a688cf534aedac288e5830c1d (MD5) Previous issue date: 2021-11-23en
dc.embargo.release2023-11-23
dc.identifier.doi10.1111/eufm.12345en_US
dc.identifier.issn1354-7798
dc.identifier.urihttp://hdl.handle.net/11693/77206
dc.language.isoEnglishen_US
dc.publisherWiley-Blackwell Publishing Ltd.en_US
dc.relation.isversionofhttps://doi.org/10.1111/eufm.12345en_US
dc.source.titleEuropean Financial Managementen_US
dc.subjectBig dataen_US
dc.subjectData analyticsen_US
dc.subjectEfficient market hypothesisen_US
dc.subjectForecastingen_US
dc.subjectMachine learningen_US
dc.titleForecasting high-frequency excess stock returns via data analytics and machine learningen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Forecasting_high-frequency_excess_stock_returns_via_data_analytics_and_machine_learning.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: