Ensemble pruning for text categorization based on data partitioning
dc.citation.epage | 361 | en_US |
dc.citation.spage | 352 | en_US |
dc.citation.volumeNumber | 7097 | en_US |
dc.contributor.author | Toraman, Çağrı | en_US |
dc.contributor.author | Can, Fazlı | en_US |
dc.coverage.spatial | Dubai, United Arab Emirates | en_US |
dc.date.accessioned | 2016-02-08T12:15:18Z | |
dc.date.available | 2016-02-08T12:15:18Z | |
dc.date.issued | 2011 | en_US |
dc.department | Department of Computer Engineering | en_US |
dc.description | Conference name: 7th Asia Information Retrieval Societies Conference, AIRS 2011 | en_US |
dc.description | Date of Conference: December 18-20, 2011 | en_US |
dc.description.abstract | Ensemble methods can improve the effectiveness in text categorization. Due to computation cost of ensemble approaches there is a need for pruning ensembles. In this work we study ensemble pruning based on data partitioning. We use a ranked-based pruning approach. For this purpose base classifiers are ranked and pruned according to their accuracies in a separate validation set. We employ four data partitioning methods with four machine learning categorization algorithms. We mainly aim to examine ensemble pruning in text categorization. We conduct experiments on two text collections: Reuters-21578 and BilCat-TRT. We show that we can prune 90% of ensemble members with almost no decrease in accuracy. We demonstrate that it is possible to increase accuracy of traditional ensembling with ensemble pruning. © 2011 Springer-Verlag Berlin Heidelberg. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T12:15:18Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011 | en |
dc.identifier.doi | 10.1007/978-3-642-25631-8_32 | en_US |
dc.identifier.doi | 10.1007/978-3-642-25631-8 | en_US |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/11693/28247 | |
dc.language.iso | English | en_US |
dc.publisher | Springer, Berlin, Heidelberg | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/978-3-642-25631-8_32 | en_US |
dc.relation.isversionof | https://doi.org/10.1007/978-3-642-25631-8 | en_US |
dc.source.title | Information Retrieval Technology | en_US |
dc.subject | Data partitioning | en_US |
dc.subject | Base classifiers | en_US |
dc.subject | Computation costs | en_US |
dc.subject | Data partitioning | en_US |
dc.subject | Data-partitioning method | en_US |
dc.subject | Ensemble members | en_US |
dc.subject | Ensemble methods | en_US |
dc.subject | Ensemble pruning | en_US |
dc.subject | Reuters-21578 | en_US |
dc.subject | Text categorization | en_US |
dc.subject | Text collection | en_US |
dc.subject | Data handling | en_US |
dc.subject | Infrared devices | en_US |
dc.subject | Text processing | en_US |
dc.subject | Information retrieval | en_US |
dc.title | Ensemble pruning for text categorization based on data partitioning | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Ensemble pruning for text categorization based on data partitioning.pdf
- Size:
- 216.91 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version