Linear topological structure of spaces of Whitney functions defined on sequences of points
buir.advisor | Goncharov, Alexander | |
dc.contributor.author | Zeki, Mustafa | |
dc.date.accessioned | 2016-07-01T10:56:18Z | |
dc.date.available | 2016-07-01T10:56:18Z | |
dc.date.issued | 2002 | |
dc.description | Cataloged from PDF version of article. | en_US |
dc.description.abstract | In this work we consider the spaces of Whitney functions defined on convergent sequences of points.By means of linear topological invariants we analyze linear topological structure of these spaces .Using diametral dimension we found a continuum of pairwise non-isomorphic spaces for so called regular type and proved that more refined invariant compound invariants are not stronger than diametral dimension in this case . On the other hand, we get the same diametral dimension for the spaces of Whitney functions defined on irregular compact sets. | en_US |
dc.description.provenance | Made available in DSpace on 2016-07-01T10:56:18Z (GMT). No. of bitstreams: 1 0002213.pdf: 261293 bytes, checksum: ba796458ef0cba8fd4722879f394fd56 (MD5) Previous issue date: 2002 | en |
dc.description.statementofresponsibility | Zeki, Mustafa | en_US |
dc.format.extent | vi, 40 leaves | en_US |
dc.identifier.itemid | BILKUTUPB067718 | |
dc.identifier.uri | http://hdl.handle.net/11693/29240 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Linear Topological Invariants | en_US |
dc.subject | Whitney Functions | en_US |
dc.subject | Diametral Dimension | en_US |
dc.subject | en_US | |
dc.subject.lcc | QA322 .Z45 2002 | en_US |
dc.subject.lcsh | Linear topological spaces. | en_US |
dc.title | Linear topological structure of spaces of Whitney functions defined on sequences of points | en_US |
dc.type | Thesis | en_US |
thesis.degree.discipline | Mathematics | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 0002213.pdf
- Size:
- 255.17 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version