Modular representations and monomial burnside rings

buir.advisorBarker, Laurence J.
dc.contributor.authorCoşkun, Olcay
dc.date.accessioned2016-07-01T11:01:02Z
dc.date.available2016-07-01T11:01:02Z
dc.date.issued2004
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractWe introduce canonical induction formulae for some character rings of a finite group, some of which follows from the formula for the complex character ring constructed by Boltje. The rings we will investigate are the ring of modular characters, the ring of characters over a number field, in particular, the field of real numbers and the ring of rational characters of a finite p−group. We also find the image of primitive idempotents of the algebra of the complex and modular character rings under the corresponding canonical induction formulae. The thesis also contains a summary of the theory of the canonical induction formula and a review of the induction theorems that are used to construct the formulae mentioned above.en_US
dc.description.provenanceMade available in DSpace on 2016-07-01T11:01:02Z (GMT). No. of bitstreams: 1 0002628.pdf: 290225 bytes, checksum: cb4d6b38dc40200a74929c83be67eec6 (MD5) Previous issue date: 2004en
dc.description.statementofresponsibilityCoşkun, Olcayen_US
dc.format.extentvii, 46 leavesen_US
dc.identifier.itemidBILKUTUPB084008
dc.identifier.urihttp://hdl.handle.net/11693/29537
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCanonical inductionen_US
dc.subjectprimitive idempotentsen_US
dc.subjectrational characters of p−groups,en_US
dc.subjectreal charactersen_US
dc.subjectmodular charactersen_US
dc.subject.lccQA171 .C67 2004en_US
dc.subject.lcshBurnside problem.en_US
dc.titleModular representations and monomial burnside ringsen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0002628.pdf
Size:
283.42 KB
Format:
Adobe Portable Document Format
Description:
Full printable version