Target detection in SAR images using codifference and directional filters
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Target detection in SAR images using region covariance (RC) and codifference methods is shown to be accurate despite the high computational cost. The proposed method uses directional filters in order to decrease the search space. As a result the computational cost of the RC based algorithm significantly decreases. Images in MSTAR SAR database are first classified into several categories using directional filters (DFs). Target and clutter image features are extracted using RC and codifference methods in each class. The RC and codifference matrix features are compared using l 1 norm distance metric. Support vector machines which are trained using these matrices are also used in decision making. Simulation results are presented. © 2010 Copyright SPIE - The International Society for Optical Engineering.