Hypergraph partitioning-based fill-reducing ordering for symmetric matrices
buir.contributor.author | Aykanat, Cevdet | |
dc.citation.epage | 2023 | en_US |
dc.citation.issueNumber | 4 | en_US |
dc.citation.spage | 1996 | en_US |
dc.citation.volumeNumber | 33 | en_US |
dc.contributor.author | Çatalyürek, Ü. V. | en_US |
dc.contributor.author | Aykanat, Cevdet | en_US |
dc.contributor.author | Kayaaslan, E. | en_US |
dc.date.accessioned | 2016-02-08T09:51:00Z | |
dc.date.available | 2016-02-08T09:51:00Z | |
dc.date.issued | 2011 | en_US |
dc.department | Department of Computer Engineering | en_US |
dc.description.abstract | A typical first step of a direct solver for the lin ear system Mx = b is reordering of the symmetric matrix M to improve execution time and space requirements of the solution process. In this work, we propose a novel nested-dissection-based ordering approach that utilizes hypergraph partitioning. Our approach is based on the formulation of graph partitioning by vertex separator (GPVS) problem as a hypergraph partitioning problem. This new formulation is immune to deficiency of GPVS in a multilevel framework and hence enables better orderings. In matrix terms, our method relies on the existence of a structural factorization of the input M matrix in the form of M = AA T (or M = AD2AT). We show that the partitioning of the row-net hypergraph representation of the rectangular matrix A induces a GPVS of the standard graph representation of matrix M. In the absence of such factorization, we also propose simple, yet effective structural factorization techniques that are based on finding an edge clique cover of the standard graph representation of matrix M, and hence applicable to any arbitrary symmetric matrix M. Our experimental evaluation has shown that the proposed method achieves better ordering in comparison to state-of-the-art graph-based ordering tools even for symmetric matrices where structural M = AAT factorization is not provided as an input. For matrices coming from linear programming problems, our method enables even faster and better orderings. © 2011 Societ y for Industrial and Applied Mathematics. | en_US |
dc.identifier.doi | 10.1137/090757575 | en_US |
dc.identifier.eissn | 1095-7197 | en_US |
dc.identifier.issn | 1064-8275 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/21776 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1137/090757575 | en_US |
dc.source.title | SIAM Journal on Scientific Computing | en_US |
dc.subject | Combinatorial scientific computing | en_US |
dc.subject | Fill - reducing ordering | en_US |
dc.subject | Hypergraph partitioning | en_US |
dc.subject | Clique cover | en_US |
dc.title | Hypergraph partitioning-based fill-reducing ordering for symmetric matrices | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Hypergraph partitioning-based fill-reducing ordering for symmetric matrices.pdf
- Size:
- 1.44 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version