Bioinspired organic-inorganic composite materials
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Nature has been an inspiration and information source for scientists over centuries, for developing new materials. A great e ort has been spent in order to understand biological materials. The biomineralization process is observed in the nature and it creates perfectly hierarchical structures, which give the living organisms extraordinary properties. It is also a fact that along with the nature; living creatures such as nacre and bacteria employ biomineralization in order to produce minerals for protection and navigation purposes. In addition, bone is a composite material which protects the internal organs and provides mechanical support and is a result of biomineralization process. In this thesis, the biomineralization processes of living organisms and bone is mimicked by employing peptide amphiphile nano bers as templates for inorganic materials production. Glutamic acid residue is used in order the mimic the negatively charged domains for proteins, which play crucial roles in biomineralization process in some organisms and bone. In order to mimic the structure of sea shell, which is composed of calcium carbonate, and bone, which consists of calcium phosphate, relevant mineral solutions were used. In conclusion, when organic and inorganic components are used together, they demonstrate superior mechanical properties, when compared to organic molecules alone.