Enhancing feature selection with contextual relatedness filtering using Wikipedia

Limited Access
This item is unavailable until:
2019-08-10
Date
2017-08
Editor(s)
Advisor
Can, Fazlı
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Feature selection is an important component of information retrieval and natural language processing applications. It is used to extract distinguishing terms for a group of documents; such terms, for example, can be used for clustering, multi-document summarization and classi cation. The selected features are not always the best representatives of the documents due to some noisy terms. Addressing this issue, our contribution is twofold. First, we present a novel approach of ltering out the noisy, unrelated terms from the feature lists with the usage of contextual relatedness information of terms to their topics in order to enhance the feature set quality. Second, we propose a new method to assess the contextual relatedness of terms to the topic of their documents. Our approach automatically decides the contextual relatedness of a term to the topic of a set of documents using co-occurrences with the distinguishing terms of the document set inside an external knowledge source, Wikipedia for our work. Deletion of unrelated terms from the feature lists gives a better, more related set of features. We evaluate our approach for cluster labeling problem where feature sets for clusters can be used as label candidates. We work on commonly used 20NG and ODP datasets for the cluster labeling problem, nding that it successfully detects relevancy information of terms to topics, and ltering out irrelevant label candidates results in signi cantly improved cluster labeling quality.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)