Digital computation of linear canonical transforms

Date

2008

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
19
downloads

Citation Stats

Series

Abstract

We deal with the problem of efficient and accurate digital computation of the samples of the linear canonical transform (LCT) of a function, from the samples of the original function. Two approaches are presented and compared. The first is based on decomposition of the LCT into chirp multiplication, Fourier transformation, and scaling operations. The second is based on decomposition of the LCT into a fractional Fourier transform followed by scaling and chirp multiplication. Both algorithms take ∼ N log N time, where N is the time-bandwidth product of the signals. The only essential deviation from exactness arises from the approximation of a continuous Fourier transform with the discrete Fourier transform. Thus, the algorithms compute LCTs with a performance similar to that of the fast Fourier transform algorithm in computing the Fourier transform, both in terms of speed and accuracy.

Source Title

IEEE Transactions on Signal Processing

Publisher

Institute of Electrical and Electronics Engineers

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English