On power series with one singular point at circumference of convergence

buir.advisorOstrovskii, Lossif V.
dc.contributor.authorYardımcı, Umut
dc.date.accessioned2016-01-08T18:23:56Z
dc.date.available2016-01-08T18:23:56Z
dc.date.issued2002
dc.descriptionAnkara : The Department of Mathematics and the Institute of Engineering and Sciences of Bilkent University, 2002.en_US
dc.descriptionThesis (Master's) -- Bilkent University, 2002.en_US
dc.descriptionIncludes bibliographical references leaves 54.en_US
dc.description.abstractWe obtain two refinements of Faber’s theorem related to power series with one singular point at circumference of convergence. The first one characterizes growth at the singular point in more precise scale of growth. The second one characterizes the growth at the singular point using series expansions both inside and outside the disc of convergence.en_US
dc.description.provenanceMade available in DSpace on 2016-01-08T18:23:56Z (GMT). No. of bitstreams: 1 0002045.pdf: 327275 bytes, checksum: 198ee3335cff458ee006cf3456525168 (MD5)en
dc.description.statementofresponsibilityYardımcı, Umuten_US
dc.format.extentvii, 54 leaves, 30 cmen_US
dc.identifier.urihttp://hdl.handle.net/11693/15742
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEntire functionen_US
dc.subjectorderen_US
dc.subjecttypeen_US
dc.subjectindicator functionen_US
dc.subjectPhragm´en Lindel¨of theoremen_US
dc.subjectLeau-Wiegert theoremen_US
dc.subjectFaber theoremen_US
dc.subject.lccQA353.E5 Y37 2002en_US
dc.subject.lcshFunctions, Entire.en_US
dc.subject.lcshSeries infinite.en_US
dc.subject.lcshFunctions.en_US
dc.titleOn power series with one singular point at circumference of convergenceen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0002045.pdf
Size:
319.6 KB
Format:
Adobe Portable Document Format