lp-norm constrained one-class classifier combination

buir.contributor.authorNourmohammadi, , Sepehr
buir.contributor.authorRahimzadeh Arashloo,, Shervin
buir.contributor.orcidNourmohammadi, Sepehr|0009-0001-8238-0603
buir.contributor.orcidRahimzadeh Arashloo, Shervin|0000-0003-0189-4774
dc.citation.epage13
dc.citation.spage1
dc.citation.volumeNumber114
dc.contributor.authorNourmohammadi, Sepehr
dc.contributor.authorRahimzadeh Arashloo, Shervin
dc.contributor.authorKittler, Josef
dc.date.accessioned2025-02-21T11:12:10Z
dc.date.available2025-02-21T11:12:10Z
dc.date.issued2024-10-16
dc.departmentDepartment of Computer Engineering
dc.description.abstractClassifier fusion is established as an effective methodology for boosting performance in different classification settings and one-class classification is no exception. In this study, we consider the one-class classifier fusion problem by modelling the sparsity/uniformity of the ensemble. To this end, we formulate a convex objective function to learn the weights in a linear ensemble model and impose a variable l(p >= 1)-norm constraint on the weight vector. The vector-norm constraint enables the model to adapt to the intrinsic uniformity/sparsity of the ensemble in the space of base learners and acts as a (soft) classifier selection mechanism by shaping the relative magnitudes of fusion weights. Drawing on the Frank-Wolfe algorithm, we then present an effective approach to solve the proposed convex constrained optimisation problem efficiently. We evaluate the proposed one-class classifier combination approach on multiple data sets from diverse application domains and illustrate its merits in comparison to the existing approaches.
dc.description.provenanceSubmitted by Zeliha Bucak Çelik (zeliha.celik@bilkent.edu.tr) on 2025-02-21T11:12:10Z No. of bitstreams: 1 lp-norm_constrained_one-class_classifier_combination.pdf: 810439 bytes, checksum: 1fea555802413383cd443a71c2686724 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-21T11:12:10Z (GMT). No. of bitstreams: 1 lp-norm_constrained_one-class_classifier_combination.pdf: 810439 bytes, checksum: 1fea555802413383cd443a71c2686724 (MD5) Previous issue date: 2024-10-16en
dc.embargo.release2026-10-16
dc.identifier.doi10.1016/j.inffus.2024.102700
dc.identifier.eissn1872-6305
dc.identifier.issn1566-2535
dc.identifier.urihttps://hdl.handle.net/11693/116557
dc.language.isoEnglish
dc.publisherElsevier BV
dc.relation.isversionofhttps://dx.doi.org/10.1016/j.inffus.2024.102700
dc.source.titleInformation Fusion
dc.subjectClassifier combination
dc.subjectOne-class classification
dc.subjectSparsity modelling
dc.subjectl(p)-norm constraint
dc.subjectConvex optimisation
dc.titlelp-norm constrained one-class classifier combination
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
lp-norm_constrained_one-class_classifier_combination.pdf
Size:
791.44 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: