A decoupled local memory allocator
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Compilers use software-controlled local memories to provide fast, predictable, and power-efficient access to critical data. We show that the local memory allocation for straight-line, or linearized programs is equivalent to a weighted interval-graph coloring problem. This problem is new when allowing a color interval to "wrap around," and we call it the submarine-building problem. This graph-theoretical decision problem differs slightly from the classical ship-building problem, and exhibits very interesting and unusual complexity properties. We demonstrate that the submarine-building problem is NP-complete, while it is solvable in linear time for not-so-proper interval graphs, an extension of the the class of proper interval graphs. We propose a clustering heuristic to approximate any interval graph into a not-so-proper interval graph, decoupling spill code generation from local memory assignment. We apply this heuristic to a large number of randomly generated interval graphs reproducing the statistical features of standard local memory allocation benchmarks, comparing with state-of-the-art heuristics. © 2013 ACM.