Degree bounds for modular covariants
buir.contributor.author | Sezer, Müfit | |
dc.citation.epage | 910 | en_US |
dc.citation.issueNumber | 4 | en_US |
dc.citation.spage | 905 | en_US |
dc.citation.volumeNumber | 32 | en_US |
dc.contributor.author | Elmer, J. | |
dc.contributor.author | Sezer, Müfit | |
dc.date.accessioned | 2021-03-30T10:48:15Z | |
dc.date.available | 2021-03-30T10:48:15Z | |
dc.date.issued | 2020 | |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Let V, W be representations of a cyclic group G of prime order p over a field k of characteristic p. The module of covariants k[V, W]G is the set of G-equivariant polynomial maps V → W, and is a module over k[V ]G. We give a formula for the Noether bound β(k[V, W]G, k[V ]G), i.e. the minimal degree d such that k[V, W]G is generated over k[V ]G by elements of degree at most d | en_US |
dc.identifier.eissn | 1435-5337 | |
dc.identifier.issn | 0933-7741 | |
dc.identifier.uri | http://hdl.handle.net/11693/76015 | |
dc.language.iso | English | en_US |
dc.publisher | De Gruyter | en_US |
dc.source.title | Forum Mathematicum | en_US |
dc.subject | Invariant theory | en_US |
dc.subject | Modular representation | en_US |
dc.subject | Cyclic group | en_US |
dc.subject | Module of covariants | en_US |
dc.subject | Noether bound | en_US |
dc.title | Degree bounds for modular covariants | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Degree_bounds_for_modular_covariants.pdf
- Size:
- 275.08 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: