TL/OSL studies of Li2B4O7:Cu dosimetric phosphors
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
Dosimetric phosphors of Cu-doped lithium tetraborate (Li2B 4O7:Cu) were produced using a sintering technique in a laboratory environment and characterized using Scanning Electron Microscopy (SEM) and X-ray Diffractometry (XRD). The thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of powdered (Li2B 4O7) phosphor doped with copper at different concentrations (0.020-0.025 wt %) were studied. The Cu-doped Li 2B4O7 phosphor material has two dominant TL glow peaks, and the maximum TL responses of the peaks are at 115 C and 243 C in the range of 0 C-310 C. The TL response of the Cu-doped lithium tetraborate is approximately 900 times more sensitive than undoped lithium tetraborate. The TL and OSL signal intensities increase as the beta radiation doses increase up to approximately 150.00 Gy and 76.50 Gy, respectively. The OSL dose-response curve is linear up to a dose range of 12.00 Gy for Cu-doped Li2B 4O7 dosimetric phosphors. The time-dependent fading behavior of the Cu-doped lithium tetraborate was found to be quite stable over long time durations. In addition, the repeatability of the OSL dose measurements were determined to be 2/3 lower compared to the TL measurements. The reproducibility of the OSL measurements was approximately 5%. Based on the TL and OSL results, the prepared phosphors can be used to measure beta doses ranging from 10 μGy to 150.00 Gy and 76.50 Gy, respectively, by using the TL and OSL techniques, with confidence limits of approximately 7% and 3-4%, respectively. © 2013 Elsevier Ltd. All rights reserved.