Energy and angular momentum transfer with circular Rydberg states

Available
The embargo period has ended, and this item is now available.

Date

2017-08

Editor(s)

Advisor

Wüster, Sebastian

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
26
downloads

Series

Abstract

Circular states belong to a class of Rydberg states having maximum angular momentum. These states, compared to other Rydberg states, have longer lifetimes, and in the classical limit resemble circular Bohr-like orbits. The long lifetime makes them suitable for use in cavity-QED experiments, precision measurements and simulation of quantum energy transport in biological systems. Energy transfer has earlier been studied using non-circular Rydberg states. Here, we look at interacting ultra-cold atoms in circular Rydberg states, and show how energy and angular momentum transfer can be studied in much larger systems due to improved lifetimes. As we show this is made possible by reducing the number of interacting two-atom states involved in transport to just two, via dipole-dipole selection rules. We determine the trapping precision required to maintain this simple description. Finally we present initial investigations to what extent transport with circular states can be modelled classically. Our results indicate that circular Rydberg states can be used for quantum simulations of energy and angular momentum transport for longer times than low-lying angular momentum states. Through using a pair of circular states with comparable C3 values Rydberg atomic chains could also nd application in quantum information transfer mechanisms.

Source Title

Publisher

Course

Other identifiers

Book Title

Keywords

Degree Discipline

Physics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type