On-the-fly ensemble classifier pruning in evolving data streams

Available
The embargo period has ended, and this item is now available.

Date

2019-09

Editor(s)

Advisor

Can, Fazlı

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
1
views
33
downloads

Series

Abstract

Ensemble pruning is the process of selecting a subset of component classifiers from an ensemble which performs at least as well as the original ensemble while reducing storage and computational costs. Ensemble pruning in data streams is a largely unexplored area of research. It requires analysis of ensemble components as they are running on the stream and differentiation of useful classifiers from redundant ones. We present two on-the-fly ensemble pruning methods; Class-wise Component Ranking-based Pruner (CCRP) and Cover Coefficient-based Pruner (CCP). CCRP aims that the resulting pruned ensemble contains the best performing classifier for each target class and hence, reduces the effects of class imbalance. On the other hand, CCP aims to select components that make misclassification errors on different instances. The conducted experiments on real-world and synthetic data streams demonstrate that different types of ensembles that integrate pruners consume significantly less memory and perform significantly faster without hurting the predictive performance.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)