Sliding windows over uncertain data streams

dc.citation.epage190en_US
dc.citation.issueNumber1en_US
dc.citation.spage159en_US
dc.citation.volumeNumber45en_US
dc.contributor.authorDallachiesa, M.en_US
dc.contributor.authorJacques-Silva, G.en_US
dc.contributor.authorGedik, B.en_US
dc.contributor.authorWu, Kun-Lungen_US
dc.contributor.authorPalpanas, T.en_US
dc.date.accessioned2016-02-08T10:33:19Z
dc.date.available2016-02-08T10:33:19Z
dc.date.issued2015en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractUncertain data streams can have tuples with both value and existential uncertainty. A tuple has value uncertainty when it can assume multiple possible values. A tuple is existentially uncertain when the sum of the probabilities of its possible values is <1. A situation where existential uncertainty can arise is when applying relational operators to streams with value uncertainty. Several prior works have focused on querying and mining data streams with both value and existential uncertainty. However, none of them have studied, in depth, the implications of existential uncertainty on sliding window processing, even though it naturally arises when processing uncertain data. In this work, we study the challenges arising from existential uncertainty, more specifically the management of count-based sliding windows, which are a basic building block of stream processing applications. We extend the semantics of sliding window to define the novel concept of uncertain sliding windows and provide both exact and approximate algorithms for managing windows under existential uncertainty. We also show how current state-of-the-art techniques for answering similarity join queries can be easily adapted to be used with uncertain sliding windows. We evaluate our proposed techniques under a variety of configurations using real data. The results show that the algorithmsen_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:33:19Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2015en
dc.identifier.doi10.1007/s10115-014-0804-5en_US
dc.identifier.issn0219-1377en_US
dc.identifier.urihttp://hdl.handle.net/11693/24714en_US
dc.language.isoEnglishen_US
dc.publisherSpringer U Ken_US
dc.relation.isversionofhttps://doi.org/10.1007/s10115-014-0804-5en_US
dc.source.titleKnowledge and Information Systems : an international journalen_US
dc.subjectData stream processingen_US
dc.subjectSliding windowsen_US
dc.subjectUncertainty managementen_US
dc.titleSliding windows over uncertain data streamsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sliding windows over uncertain data streams.pdf
Size:
1.31 MB
Format:
Adobe Portable Document Format
Description:
Full printable version