A generalization of a modular identity of Rogers

dc.citation.epage1271en_US
dc.citation.issueNumber6en_US
dc.citation.spage1256en_US
dc.citation.volumeNumber129en_US
dc.contributor.authorYeşilyurt, Hamzaen_US
dc.date.accessioned2016-02-08T10:04:06Z
dc.date.available2016-02-08T10:04:06Z
dc.date.issued2009en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractIn a handwritten manuscript published with his lost notebook, Ramanujan stated without proofs forty identities for the Rogers-Ramanujan functions. Most of the elementary proofs given for these identities are based on Schröter-type theta function identities in particular, the identities of L.J. Rogers. We give a generalization of Rogers's identity that also generalizes similar formulas of H. Schröter, and of R. Blecksmith, J. Brillhart, and I. Gerst. Applications to modular equations, Ramanujan's identities for the Rogers-Ramanujan functions as well as new identities for these functions are given.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:04:06Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009en
dc.identifier.doi10.1016/j.jnt.2009.01.007en_US
dc.identifier.issn0022-314X
dc.identifier.urihttp://hdl.handle.net/11693/22734
dc.language.isoEnglishen_US
dc.publisherAcademic Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jnt.2009.01.007en_US
dc.source.titleJournal of Number Theoryen_US
dc.titleA generalization of a modular identity of Rogersen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A_generalization_of_a_modular_identity_of_Rogers.pdf
Size:
212.83 KB
Format:
Adobe Portable Document Format
Description:
Full printable version