A generalization of a modular identity of Rogers
dc.citation.epage | 1271 | en_US |
dc.citation.issueNumber | 6 | en_US |
dc.citation.spage | 1256 | en_US |
dc.citation.volumeNumber | 129 | en_US |
dc.contributor.author | Yeşilyurt, Hamza | en_US |
dc.date.accessioned | 2016-02-08T10:04:06Z | |
dc.date.available | 2016-02-08T10:04:06Z | |
dc.date.issued | 2009 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | In a handwritten manuscript published with his lost notebook, Ramanujan stated without proofs forty identities for the Rogers-Ramanujan functions. Most of the elementary proofs given for these identities are based on Schröter-type theta function identities in particular, the identities of L.J. Rogers. We give a generalization of Rogers's identity that also generalizes similar formulas of H. Schröter, and of R. Blecksmith, J. Brillhart, and I. Gerst. Applications to modular equations, Ramanujan's identities for the Rogers-Ramanujan functions as well as new identities for these functions are given. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:04:06Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2009 | en |
dc.identifier.doi | 10.1016/j.jnt.2009.01.007 | en_US |
dc.identifier.issn | 0022-314X | |
dc.identifier.uri | http://hdl.handle.net/11693/22734 | |
dc.language.iso | English | en_US |
dc.publisher | Academic Press | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.jnt.2009.01.007 | en_US |
dc.source.title | Journal of Number Theory | en_US |
dc.title | A generalization of a modular identity of Rogers | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- A_generalization_of_a_modular_identity_of_Rogers.pdf
- Size:
- 212.83 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version