Text summarization of turkish texts using latent semantic analysis
Date
2010
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
COLING '10 Proceedings of the 23rd International Conference on Computational Linguistics
Print ISSN
Electronic ISSN
Publisher
ACM
Volume
2
Issue
Pages
869 - 876
Language
English
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
1
views
views
4
downloads
downloads
Series
Abstract
Text summarization solves the problem of extracting important information from huge amount of text data. There are various methods in the literature that aim to find out well-formed summaries. One of the most commonly used methods is the Latent Semantic Analysis (LSA). In this paper, different LSA based summarization algorithms are explained and two new LSA based summarization algorithms are proposed. The algorithms are evaluated on Turkish documents, and their performances are compared using their ROUGE-L scores. One of our algorithms produces the best scores.