Closed embeddings of Hilbert spaces

dc.citation.epage75en_US
dc.citation.issueNumber1en_US
dc.citation.spage60en_US
dc.citation.volumeNumber369en_US
dc.contributor.authorCojuhari, P.en_US
dc.contributor.authorGheondea, A.en_US
dc.date.accessioned2016-02-08T09:57:17Z
dc.date.available2016-02-08T09:57:17Z
dc.date.issued2010en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractMotivated by questions related to embeddings of homogeneous Sobolev spaces and to comparison of function spaces and operator ranges, we introduce the notion of closely embedded Hilbert spaces as an extension of that of continuous embedding of Hilbert spaces. We show that this notion is a special case of that of Hilbert spaces induced by unbounded positive selfadjoint operators that corresponds to kernel operators in the sense of L. Schwartz. Certain canonical representations and characterizations of uniqueness of closed embeddings are obtained. We exemplify these constructions by closed, but not continuous, embeddings of Hilbert spaces of holomorphic functions. An application to the closed embedding of a homogeneous Sobolev space on Rn in L2(Rn), based on the singular integral operator associated to the Riesz potential, and a comparison to the case of the singular integral operator associated to the Bessel potential are also presented. As a second application we show that a closed embedding of two operator ranges corresponds to absolute continuity, in the sense of T. Ando, of the corresponding kernel operators. © 2010 Elsevier Inc.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:57:17Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2010en
dc.identifier.doi10.1016/j.jmaa.2010.02.027en_US
dc.identifier.issn0022247X
dc.identifier.urihttp://hdl.handle.net/11693/22231
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jmaa.2010.02.027en_US
dc.source.titleJournal of Mathematical Analysis and Applicationsen_US
dc.subjectAbsolute continuityen_US
dc.subjectClosed embeddingen_US
dc.subjectContinuous embeddingen_US
dc.subjectHilbert spaceen_US
dc.subjectHomogeneous Sobolev spaceen_US
dc.subjectKernel operatoren_US
dc.subjectOperator rangeen_US
dc.titleClosed embeddings of Hilbert spacesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Closed_embeddings_of_Hilbert_spaces.pdf
Size:
297.08 KB
Format:
Adobe Portable Document Format
Description:
Full printable version